Traveling Waves in the Holling-tanner Model with Weak Diffusion

نویسندگان

  • Anna Ghazaryan
  • Vahagn Manukian
  • Stephen Schecter
چکیده

For wide range of parameters, we study traveling waves in a diffusive version of the Holling-Tanner predator-prey model from population dynamics. Fronts are constructed using geometric singular perturbation theory and the theory of rotated vector fields. We focus on the appearance of the fronts in various singular limits. In addition, periodic traveling waves of relaxation oscillation type are constructed using a recent generalization of the entry-exit function. Anna Ghazaryan , Vahagn Manukian , and Stephen Schecter c a Department of Mathematics, Miami University, 301 S. Patterson Ave, Oxford, OH 45056, USA, Ph. 1-513-529-0582, [email protected] b Department of Mathematics, Miami University, 1601 University Blvd, Hamilton, OH 45011, USA, Ph. 1-513-785-3220, [email protected] c Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Raleigh, NC 27695, USA, Ph. 1-919-515-6533, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Travelling waves in the Holling-Tanner model with weak diffusion.

For a wide range of parameters, we study travelling waves in a diffusive version of the Holling-Tanner predator-prey model from population dynamics. Fronts are constructed using geometric singular perturbation theory and the theory of rotated vector fields. We focus on the appearance of the fronts in various singular limits. In addition, periodic travelling waves of relaxation oscillation type ...

متن کامل

Traveling waves in a diffusive predator–prey model with holling type-III functional response

We establish the existence of traveling wave solutions and small amplitude traveling wave train solutions for a reaction-diffusion system based on a predator–prey model with Holling type-III functional response. The analysis is in the three-dimensional phase space of the nonlinear ordinary differential equation system given by the diffusive predator– prey system in the traveling wave variable. ...

متن کامل

Computational Study of Traveling Wave Solutions and Global Stability of Predator-Prey Models

In this thesis, we study two types of reaction-diffusion systems which have direct applications in understanding wide range of phenomena in chemical reaction, biological pattern formation and theoretical ecology. The first part of this thesis is on propagating traveling waves in a class of reaction-diffusion systems which model isothermal autocatalytic chemical reactions as well as microbial gr...

متن کامل

Hopf bifurcation and Turing instability in the reaction–diffusion Holling–Tanner predator–prey model

The reaction–diffusion Holling–Tanner predator–prey model with Neumann boundary condition is considered. We perform a detailed stability and Hopf bifurcation analysis and derive conditions for determining the direction of bifurcation and the stability of the bifurcating periodic solution. For partial differential equation (PDE), we consider the Turing instability of the equilibrium solutions an...

متن کامل

Pattern Formation in a Cross-Diffusive Holling-Tanner Model

We present a theoretical analysis of the processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with selfas well as crossdiffusion in a Holling-Tanner predator-prey model; the sufficient conditions for the Turing instability with zero-flux boundary conditions are obtained; Hopf and Turing bifurcation in a spatial domain is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015